
Gli studiosi hanno misurato le variazioni di luminosità, nel corso di centinaia di giorni, di 14 quasar di cui è noto il redshift: lo spostamento verso il rosso delle righe spettrali dovuto all’effetto Doppler, che è quindi una misura indiretta della distanza di questi oggetti e della velocità a cui si allontantano da noi. Gli studiosi si sono accorti che l’andamento della variazione della loro luce, una volta fatte le correzioni dovute ai diversi redshift, era uguale per tutti i Quasar analizzati. “È come se ci fosse un regolatore di luce su di loro, con qualcuno che lo gira a sinistra e poi a destra” ha detto Glenn Starkman, professore di Fisica alla Case Western Reserve University, in Ohio, e autore dello studio, pubblicato quest’estate su Physical Review Letters. “La tendenza generale era sorprendentemente uguale per tutti i quasar”.
A questo punto, la tecnica permette di misurare il redhift (e la distanza) di altri Quasar. Misurando la velocità con cui la luce di un quasar sembra variare e confrontandola al ritmo di variazione “standard” trovato in questi 14 oggetti campiom, è possibile dedurre il suo redshift. Conoscere questa misura consente agli scienziati di calcolare la dimensione relativa che aveva l’Universo da quando la luce dei quasar è stata emessa rispetto ad oggi. Più grande è il redshift, più lontana e vecchia è la sorgente luminosa: “Se potessimo misurare i redshift di milioni di quasar, li potremmo usare per mappare le strutture dell’Universo fino a grandissime distanze” continua Starkman.
Gli astronomi hanno da sempre utilizzato le variazioni di luce di supernovae per misurare l’espansione dell’Universo. Questo gruppo di stelle ha un redshift fino a 1,7 e questo valore equivarrebbe a quando l’Universo era 2,7 volte più piccolo di oggi.
I quasar, invece, sono più vecchi e più lontani, e sono stati misurati con un redshift fino a 7.1, il che significa che hanno emesso la luce che stiamo vedendo quando l’Universo era 1/8 della dimensione attuale.
Se questo metodo risulterà applicabile anche a valori più elevati di redshift, gli scienziati potrebbero avere milioni di marcatori per tracciare l’espansione dell’Universo a grandi distanze e nelle sue prima fasi di vita.






